Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer
نویسندگان
چکیده
The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.
منابع مشابه
Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.
Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conducti...
متن کاملTuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles
By varying the density of solution-processed lithium fluoride (sol-LiF) nanoparticles at the interface between tin-doped indium oxide (ITO) and poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), we have demonstrated that the electronic hole collection efficiency of an organic photovoltaic cell can be optimized through tuning the energy level alignment at the ITO/PEDOT:PSS inter...
متن کاملInk-jet Printing of Electrolyte and Anode Functional Layer for Solid Oxide Fuel Cells (postprint)
In thiswork, solid oxide fu to study the resulting mi revealed a highly conform anode-interlayer. Open ci 0.175Wcm−2 was achieve used to fabricate stable S ceramics processing meth impact on cell performanc
متن کاملPhotoresist-Free Patterning by Mechanical Abrasion of Water-Soluble Lift-Off Resists and Bare Substrates: Toward Green Fabrication of Transparent Electrodes
This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer ...
متن کاملRadical Polymers as Anodic Charge Extraction Layers in Small Molecule Organic Photovoltaic Devices
Organic photovoltaic (OPV) devices based on the copper (II) phthalocyanine(CuPc)/ fullerene(C60) system are an innovative photovoltaic technology optimal for situations requiring low-cost, transparent, and flexible devices. Furthermore, the high degree of reproducibility of this system allows for the ready study of new OPV technologies. Here, we have used this system to elucidate systematic str...
متن کامل